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A spherical-wave-function theory of bounded homogeneous elastic anisotropic media is developed.
The anisotropic elastodynamic wave equations are solved exactly by using the method of plane-wave an-
gular spectrum expansions. The series, integral representations, and addition theorems of the spherical
wave functions of the first, second, third, and fourth kind for homogeneous elastic anisotropic media
(HEAM) are presented. Weyl’s method for the scalar Green’s functions in isotropic media is generalized
to the study of the dyadic Green’s functions in HEAM. The series representations of Green’s functions
are of the form of separated variables. These representations are well suited to imposing a boundary
condition when dealing with waves in spherically layered HEAM.

PACS number(s): 43.20.+g, 03.40.Kf

I. INTRODUCTION

The spherical wave functions (SWFs) for homogeneous
elastic isotropic media (HEIM) are well known [1]. The
eigenfunctions play a very important role in solving the
elastodynamic wave problems in both isotropic and an-
isotropic media. In order to apply the efficient recursive
algorithm developed by Chew and co-workers to the elas-
tic wave scattering by many scatterers and multilayered
scatterers of elastic anisotropic media [2] and apply the
multiple scattering theory to the discrete random media
[3], vector wave functions of all kinds and their addition
theorems are required. However, to the best of our
knowledge, so far the corresponding treatment of eigen-
functions for homogeneous elastic anisotropic media
(HEAM) has not been given.

The point-source radiation in HEAM is an important
research subject in linear and nonlinear acoustics [4].
The far-region fields can be calculated by the saddle-point
method [5], which has been used in the analysis of many
nonlinear phenomena [4]. We need the general represen-
tations of the dyadic Green’s functions to establish the
boundary integral equations [5]. We also need dyadic
Green’s functions in the form of separable variables to
derive the T-matrix formulation from Huygen’s principle
and the extinction theorem of HEAM [6]. However, the
general methods for the common representations of
Green’s dyadic for HEAM have not been published yet
except for those in the rectangular coordinate system and
in the Fourier transform domain [5].

Recently, there has been an increasing research interest
in the theory of bounded HEAM [6-8]. The elastic wave
theory of unbounded HEAM is well known [4-9]. How-
ever, the bounded cases can only be numerically treated
by some methods, such as finite element, finite difference,
moment, etc. [3].

This paper is the outgrowth of the corresponding pro-
gress in electromagnetics [10—-19]. In this paper, angular
spectrum representations similar to those proved in many
papers [10—16] are derived and used as the starting point
of our theory. The use of the expansion of a dyadic plane
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wave [20,21] considerably simplifies the analysis. An
elastic wave theory of bounded homogeneous elastic an-
isotropic media is developed in this paper. The series
representations of the first, second, third, and fourth kind
of spherical wave functions for homogeneous elastic an-
isotropic media are obtained. Each term of the series is a
product of a spherical harmonic function and a two-
dimensional finite-range integral containing a spherical
Bessel function. The addition theorem of SWFs for
HEAM can be obtained directly from that of SWFs for
HEIM. Weyl’s method of deriving the scalar Green’s
function in isotropic media is extended to the Green’s
functions in elastic anisotropic media. The dyadic
Green’s functions are of separation-of-variables form.

There are six sections in this paper. Section I summa-
rizes the anisotropic electrodynamic wave equations and
plane-wave solutions. In Sec. II we solve the anisotropic
elastodynamic wave equations in the spherical coordinate
system and give the series representations and the addi-
tion theorems of spherical wave functions of the first,
second, third, and fourth kind for HEAM. Furthermore,
we discuss the integral representations of wave functions
in Sec. IV. Section V turns to the evaluation of Green’s
dyadic for HEAM in a spherical coordinate system. Sec-
tion VI concludes the work with a discussion of related
problems.

II. WAVE EQUATION AND PLANE-WAVE SOLUTION

We shall use the same units and notation as Auld’s ex-
cept for the time dependence. In the following analysis in
exp( —iwt) time dependence is assumed and is suppressed
throughout. In addition, summation over repeated sub-
scripts is assumed. Although some of these derivations
may be referred elsewhere [4,9], we shall summarize them
briefly for the sake of completeness.

Assume an anisotropic elastic medium characterized
by constitutive relations in a rectangular coordinate sys-
tem [9],

T=C:S, (1)
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p=pV, (2)

where T, S, p, and V are the stress field tensor, the strain
field tensor, the particle momentum density, and particle
velocity, respectively. C and p are the stiffness matrix
and the density of the matter, respectively. The colon in
(1) denotes the double scalar (or double dot) product of a
fourth-rank tensor and a second-rank tensor or a third-
rank tensor and a vector. All the elements of the ma-
trices are constants in a rectangular coordinate system.
The anisotropic elastodynamic wave equations are
given as [9]
V-C:V,V—pw?V=0 . (3)
Physically, when the medium is homogeneous, plane-
wave solitons of the form eJ(¥I'r—wt) are admissible, where
T is a unit vector in the propagation direction.
Mathematically, we can solve the elastodynamic wave

equations of HEAM in the plane-wave angular spectrum
domain by the Fourier transformation [10-16],

V= [ dke™V(k) (4)
k=k,X+k,§+k2 . (4b)

Substituting (4) into (3), we get the following Christoffel
equation [9]:

k2L Cply; Vi =pa®V; , (5

where Cg; is called elastic stiffness constant and [9]

I, =cosg,sinby,l, =sing; sinby, I, =cosb; , (6a)
I, 00 0 I [

Ixg=|0 1, 0 I, 0 L |, (6b)
0 01 I I, O

Ij=Ig » (6c)

where the tilde designates a transposed matrix.
Performing the matrix multiplications in (5), we have

(9]

a & e|Vx(k) Vi (k)
k2|8 B & |V,(k)|=pa® |V, k)|, )
€ & 7|V,k) V,(k)

where
a=cyI}+cell+esslit2es6l,l 42511,

+2c161xly N

B=cegli+cpll+cyyli+2c,0,1,+2c44l,1,
+2cy61, 1

x%y
Yy =cssl}tegyllteslit2e3,l,1, +2¢35L,1,
+2c,51,1

xty »
(8)
8=Cl6l_3+C26ly2+C4SIZ2+(C46+625 )Iylz

FleaEese) ] +(ciatees )lxly >
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e=c151,?+c461y2+c35122+(c45 tezellyl,
ez tess)L ey teseld,

E=cseli+ eyl teyul} ey tey)ll,
Hlezetegs) ], ey teye)lil,

For a nontrivial solution of V(k), the characteristic
determinant of (7) must be equal to zero. This condition
yields the dispersion equation [22],

=AM+ (a+B+7y)A?
—AMay+By+aB—E*+€*+8%)]1/A+A4=0, (9a)

A=afy+28te—al?—Be*—y8?, (9b)

A=o’p/k? . (9¢)

The roots of Eq. (9) are designated in the following as
A=A, (n=1,2,3,A,<A,<A;) and k,=w(p)r,)"/% The
corresponding eigenvectors are given by [22]

Vi(k)=mXa, (10a)

Vy(k)=f+id , (10b)

Vik)=m—1, (10c)

m=y2+y,%, A=y2Z—7.X, (10d)
A=A, 2 M= v

Y3= 7\;:’}: y V2= HJ (10e)

If the eigenvectors V, (k) are found, the stress matrix
of the nth eigenwave can be easily calculated by [9]

T,=—CxplyVik /o . 1

The tensor T, is obtained by the abbreviated subscript
notation introduced in Sec. 1 F of Auld’s book [9].
Returning to Eq. (4), it is evident that the integration
over the radial wave number is reduced to a summation
of three terms which correspond to the three roots k,
(n=1,2,3). Therefore, we obtain the eigenwave angular
spectrum expansion of the velocity vector inside a spheri-
cal region of HEAM as follows [14-16]:
3 )
Vin)=3 f:ﬂdqok J7d6,k,sin6, v, ,C, (ke .

m=j
n=1

(12a)

Similarly, we have the corresponding expression for the
stress tensor

3 T T ik -r
Tn=3 f: dgy [ 7d0,k,5in0, T;;,82,C, (K)e knr

n=1
(12b)

where €; is the unit vector in the jth direction in a rec-
tangular coordinate system, ie., €,=X, €,=¥, €;=%;
C,(k) is the undetermined amplitude function; k,, V,,
and T;;, are the eigenwave number, the components of
the velocity vector V, and the components of stress ten-

sor T of the nth eigenwave, respectively. The theoretical
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analysis and the numerical results in Refs. [10-16] give
the proofs of (12).

III. SPHERICAL WAVE FUNCTIONS IN HEAM

In this section, the spherical wave functions for
HEAM are presented. From the angular spectrum repre-
sentations (12) of the fields, we obtain the spherical wave
function by the spherical harmonic-function expansion of
the undetermined amplitudes C,(k) in conjunction with
the spherical wave-function representations of a plane
wave. The formulation includes three canonical cases of
scalar, vector, and tensor fields in classical continuum
physics.

A classical way of expanding the unknown angular
spectrum amplitude is to use the series of orthogonal
complete harmonic functions on a spherical surface [20]:

o0

+1
CKI=3 3 bumXimO0ei)

I'=om'=—1r

(13)

where X,,,,(0,p)=P/"(cos8)e™?, and P/*(cos) is the as-
sociated Legendre polynomials. These notations are as-
sumed throughout this paper. The particular form of (12)
suggests the use of the identity [20]

ik - © +1
M=% S A i, X (B0 ) X (6,0)
I=0m=—1
(14a)
(I —m)!
(I+m) ~

Substituting Egs. (13) and (14) into Eq. (12b), and letting
@ be one of the components of T, we find

Ay, =i'21+1) (14b)

3 © +1
(P(r): 2 2 2 bnl’m"pnl’m’(r) ’ (15a)
n=101'=0m'=-1I'
© +1
(D)=, 3 fo foz k,sin0;k,d0,dp; @, (0, 1) A Xy (01, @1 )X (01,01 )i (k1) X, (0,) (15b)

-1

Equation (15) is the definition of scalar spherical wave functions of the first kind for HEAM. Because spherical
Bessel functions and spherical Hankel functions satisfy the same equation and the same recursive relations, Eq. (15) is
also the solution to the problem after the replacement of the spherical Bessel functions of the first kind by the spherical
Bessel functions of other kinds (the second, third, and fourth). Thus we give a general definition on scalar spherical
wave functions of HEAM as follows:

¢("i’)""'(r)=§omg IX,m(O,qJ)[fonf:ﬂknsinekdekd¢>k¢,,(Ok,cpk)X,:,,,'(Bk,gvk)A,mX,f,,(Bk,¢>k)z}“(k,,r) , i=1,2,3,4
(16)

where

Jitk,r), i=1

y,(k,,r), i=2

h{V(k,r), i=3

hPk,r), i=4

2k, r)=

is the spherical Bessel function of the ith kind and ¢, (6;,¢; ) is the known function of the medium parameters as given
in Eq. (11).

In order to derive the vector spherical wave functions for HEAM, we use the dyadic plane-wave representations
[20,21],

ik -
le™ " =3 Ay |—iP, (05,04 )L(Irln)(kn’r)+Tll_*__ﬁ[clm(ek"pk)M(Irln)(kn’r)_iBIm(ak"pk)Ngrln)(kn,r)]’ , (17a)
Lm
A ikyr_ A~ ik, T
Vi.€;e =V;.€;-le
© +1
= E Alm —ian@j'le(Ok,¢k )L(,,l,,)(k,,,t)
I=0m=-—1

1 A oA
+T/l(l—_+1?[anej'clm(9k"Pk )M(Irln)(kn’r)_lV‘ €' B (01, @1 NG (K, 1) ]

m=y m

, (17b)
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where 4,,, is glven in Eq. (14b), P, B, and C (the vector functions on a spherical surface) as well as the vector spherical
wave functions L'”, M?, and NV’ (i =1,2,3,4) are defined in the Appendix.

Substituting (17b) and (13) into (12a), we obtain the vector spherical wave functions of the first kind of HEAM as fol-
lows:

r)—Z § 2 B Vol (X)) (18a)

n—10I'=0m'=—1"

Vidwio)=[" f Xm0 i) S 2 Apy | =iV P (64,9 L1 (K, 1)
I=0m=—1

m[ n€;"Cin (01, @, ML) (K, 1)

—iV;,€;"By,, (64,9, N} (K1) ] (18b)

As vector spherical wave functions L', MY, N (i =1,2,3,4) satisfy the same vector wave equations and the same re-
curs1ve relations as LY, MV, NV, Eqs (18) also satisfy the vector wave equation (3) after the replacement of L1, M‘",
and N by L%, M) and N h (i =2,3,4), respectively. Finally, we achieve our goal

Vi 0= [ [ X0 i) 3 S 4, —i¥},&; P, (6,9, )LD (K, 1)
I=0m=-—1

VI Ve Cin (O @ M (K, 1)

iV;,€; By, (0,0 N (K, 1)1 |, i=1,2,3,4. (19)

Following a procedure similar to the one used to derive (16), we have

Thwir)= 3, [ Vdey [ 7kysin,d0, X, (60, 00)
n=1
o) +1 X
X T}, &8, 12 > IA,,,,X,:;,(ok,%)z;'>(k,,r)X,,,,(9,¢>) (i=1,2,3,4) . (20)
=0m=._

Following a procedure similar to the one used to derive (19), we have the expansion of the traction force vector on a
spherical surface in terms of vector spherical wave functions,

T,(r)=T-T(r)

3 T hd AA i
= 2 fo f Xy (O, @) 2 2 A ljnez'rej'le(ekv¢)k )L(In):(kn’r)
n=1

I=0m=—1
1 A A i
+ VId+1) [Tijnei'rej'clm(ek"Pk )M(ln):(kn’r)

—iT;, & T X€; By, (6,9, )Nib (k,,0)] | ,

i=1,2,3,4. (21)

The components of the tensor T in a spherlcal system can also be obtained by the coordinate transformation laws given
in Auld’s book, but the results to be given in the following are simpler.

Note that
T=sin6 cosgX +sinf sing§ +cos62 . (22a)
Then we have
T-X=sin6 cosp=P!(cos@)cosp , (22b)
T-§=sinfsing="P}(cosh)sing , (22¢)
T-Z=cos6=P,(cosf) . (22d)

It is also noted that
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(21+l)(sinO)ej"’X,m(9,¢)=X,+1,m+1(9,¢))—X,_l,m+1(9,<p) , (23a)
(21 +1)(sinB)e ~'9X,,,(8,0)=(1 +m)(I +m DX, ,,—1(6,9)
—U—m+DU—m+2)X; 4, ,,-1(6,9), (23b)
(21 +1)(cos0)X,, (6,p)=(—m +1)X; 4, ,(0,)+(I +m)X,_; ,,(6,9) . (23c)
We get
T-XP;,, (0,9)=sinb cos¢gtX,,, (0, @)
1
=m[1’1+1,m +16,@) =P,y (6, )+ +m)I+m —1)P;_y ., _,(6,9)
—(I=—m+D—m+2)P 1, 1(6,0)], (24a)
A A 1
ryP,,(6,p)= 2(21__}_1[PI+1 m+100,@) =P,y 1 1(0,@) (I +m)U +m —1)P;_, ,, _(6,)
—(=m+1)—m+2)Pyy,,1(6,0)], (24b)
22P,, (6,0)= 211+1 [(I—m + 1P, 41 (0,0)+( +m)P,_, ,.(6,9)] . (240)

Similarly, we can expand T-%B,,(C,,), T-¥B,,(C,, ), and T-2B,, (C,,)

[21,23]:

p—m l-I—v—p(_l)p-f-p
Xtm6,9)B_,(0,p)=3 F— L —

in terms of (22) and the following formulas

a(—pu,v|m,l|p)a(v,l,p)B_,,;(6,p)

> 2 +1
by TP L g — 1o, 6,0) 25)
; 2 +1 a(—p,vim,llp,p 0,1,p)C (6,9
Xt m(0,9)C_,(0,p)=—3i'" vop1 (P a(—/,L vim,l|p,p—1)b(v,L,p)B_,,(6,p)
P ’ —pv\Y - 2p+1 ) ’ > sy —m ’
il—v~p(__1)p+u
+; Tu(—,u,v|m,I|p)a(v,l,p)C_m1(9,q)). (26)
[
The quantities a(m,n|—u,vlp), a(m,n|—p,vlp,p —1), <p‘n‘,)m(r)—f f Xm0, @1 )@, (04, @)

a(n,v,p), and b (n,v,p) are found in Refs. [21, 23]. Using
the above formulas, we can expand T,(r) in terms of the
complete orthogonal function set on a spherical surface
{P},.,B;,,C;,}. So we can treat the scattering from an
elastic sphere analytically by solving the linear system of
equations, each of whose coefficient is a double integral
only [16]. However, following the method in the litera-
ture [14], the linear system of equations is derived from
Galerkin’s method, each of whose coefficients is a double
integral involving an infinite double series. Our method
is more efficient.

From the formalism given in this section, it is easy to
see that once the medium parameters are given, the
spherical wave functions of all kinds of HEAM are deter-
mined.

The addition theorems of spherical wave functions can
be derived directly from those for isotropic media [24].

IV. INTEGRAL REPRESENTATIONS
OF SPHERICAL WAVE FUNCTIONS

From the derivation of the above section, it is obvious
that the integral representations of spherical wave func-
tions of the first kind of HEAM are

xe™ 'k, sin6,d6,de, . Q7

The integral representation of spherical wave functions of
the ith kind for HEAM is suggested by the physical in-
sight into the problem [16],

i _ 2T
ot )= [ [ Xem 000109 (61, 01)
Xe™ "k sind,d0,de, , (28)

where C; (i =1,2,3,4) is the complex integral path of
spherical wave functions for isotropic media [21,24,25].

In this section, a strictly mathematical proof of (28)
will be given. In fact, from (14) we have

1f27'rfﬂ ik, rXIm(u ')

Xsinu'du'dv’ ,

Jilk,r) X5 (04, @)=
41ri

(29a)

r=r[Xsinu’ cosv’+§ sinu’sinv’+Zcosu’'] . (29b)
Equations (14) and (29) can be proved by examining them
for.every given (0;,¢;). So they hold even if k, is a
function of (6,9, ).

From (28), using (14) and (29), we find



™ hod 1
Dl r,0,0)= [ 4
Gitmtr 0= [7[" 3 2 -

I=0m=

This is the integral equation for the integral representa-
tions of the wave functions of the ith kind. Substituting
the series expression of the wave functions of the ith kind
(16) into Eq. (30), it is an identity. So we prove that Egs.
(16) and (30) are identical. This is the foundation of the
derivation of tensor Green’s functions in Sec. V of this
paper.

Since @ can represent any component of V and T, we
have the integral representations of the ith and tensor
spherical wave functions of various kinds for HEAM,

°r

Vn,.m,(r)=f02”d¢’k fcldekknsianV 20" ,

jn¥j
i=1,2,3,4 (la)
T,pd1)= foz”dq)k [, d6,k,sin6, T, 88,e™ ™,
i=1,2,3,4, (1b)

where C; is the complex integral path of spherical wave
functions for isotropic media [24,25].

V. DYADIC GREEN’S FUNCTIONS IN HEAM
Using the identity

S(r—r') 3f+°° ek (r=r) (32a)

the Fourier transformation of the tensor Green’s function
reads [4]

— X (0,0) X}, (0" A ryu’,0") sinu'du’dv’,
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i=1,2,3,4. (30)

The dispersion relation can be considered as a general
eigenvalue problem of real symmetrical matrices, so we
have [26]

30V, V,e ik

G(k,r')= :
®r)= 2 ek

(33)
where k, and V, are the characteristic wave number and
wave vector of the nth characteristic wave, respectively,
as discussed in Sec. II, and N, is the normalized value of
the nth eigenwave vector [26].

The inverse Fourier transform of Eq. (33) is

- 3 V.V e—ik'(rAr')
d’k 3 —S———— . (34)

G(rr)—f 2 T(R—kN?

o

The general representations in a spherical coordinate
system to be derived in this section have not been ob-
tained so far, although many researchers have treated the
problem in a rectangular coordinate system [4,5].

From

)= [ G(r,r')-f(r')d (35)
we know that G(r,r’) represents outgoing waves which

can be expanded by the spherical wave functions of the
third kind for HEAM, in which the integral for 6, is

Gk, r')= f +wd3rG(r,r’ Je ~iker along the same path C; as shown in Sec. IV. Therefore,
:l‘” e in (34) the integral over 6, is along the path C;. This
=C e T, (32b)  conclusion is supported by Weyl in calculating the point-
where [see (7)] source radiation in isotropic media [25]. Since
k,=k,sin6; and k, is a bounded function of 6, and ¢, if
s a b e , and only if the integration path C, for 6, is chosen, the
C=k*|8 B & |—poil. (32¢)  correct complex integration path for k,, may be obtained
e & v as shown by Weyl [25]. So we have
J
’ +oo 3 kr
G(rr)—-——f d°kG(k,r')-e
1 " teo 3 eik-(r—r')vnvn
=— d dé ——— " k?dk sinf
e do oS d0] D ANTEREIY: ¢
P 3 ke
e fo fC3d<pkd0k 21 V,V,(sin6; )k, . (36)

In Secs. III and IV, we show two relations. The first relation is the one between integral representation and series
representation of spherical wave functions of the third kind for HEAM. The second relation is the one between the
spherical wave functions for HEAM of the third kind and that of the first kind. In view of the above relations, we ob-

tain

o0

_lfz”dgokf do, S

I=1lm=—1

G(r,r')=

87'r

+1 . vV,V,
> Ay Ap (0, @1) >

hiV(k, |t —1'|)P(cos8 e ™¥sind, k, (37)

n
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where (6',¢') means 0,,, ¢,,» [21], and A4,,, are defined by
Eq. (14). Practically, V(r) is computed by substituting
(37) into (35).

Equation (37) can be written in the form of separation
of variables [24] when » <7’ and r > r’. The Green’s ten-
sor [6]

> =Cii(9;Gppy) (38)
i,j,m
can be easily derived by using (34) and (38). The expres-
sion for 3;;, is of a similar form as (37), which is useful
in the boundary integral equation and 7-matrix formula-
tions [6].

VI. SUMMARY AND DISCUSSION

We have developed an alternative method to transform
the eigenwave theory of unbounded HEAM to the eigen-
function theory of bounded HEAM. We have also found
a unified method to study the dyadic Green’s functions in
both isotropic and anisotropic elastic media. This study
shows that for an arbitrary homogeneous elastic region,
the acoustic fields can be expanded by a series of the
eigenwave functions, each of which is also a series just
like the isotropic case in the spheroidal coordinate system
[24]. So we can use the simple method of mode matching
to analyze the guidance, resonance, radiation, and
scattering in HEAM. The theory developed in this paper
is applicable to bounded coordinate systems, such as el-
liptic cylindrical and spheroidal coordinate systems. The
canonical solutions of wave functions and dyadic Green’s
functions for HEAM given in this paper are useful in the
further study of the problems in elastic spherical layered
structures.

As the eigenwave theory of unbounded elastic media
and the far-region fields of the Green’s functions are the
tools for the analysis of the linear and weakly nonlinear
problems, respectively [4], the wave-function theory of
bounded HEAM and the general representations of
Green’s functions given in this paper are the foundation
of the corresponding problems [4,9]. The latter is also
useful in the boundary integral equations and T-matrix
formulation of the problems [6)].

The present work, in comparison with previous works,
has the following features.

(i) Although the method of angular spectrum expan-
sion has been successfully used to solve the problems in a
simply connected domain by many authors [10-15], we
generalize the treatment of the electromagnetic fields in
the anisotropic annular domain [16] to that of the acous-
tic fields in elastic anisotropic annular domain. While all
the authors of Refs. [10—15] used the representations of
the plane-wave angular spectrum to simplify the numeri-
cal computation, we utilize the similar representations for
the general solutions of the anisotropic elastodynamic
wave equations in HEAM. The focus point is therefore
different. Furthermore, there are similarities between the
present theory and the classical one [20,25] for isotropic
media. This is helpful in the formulation of boundary
value problems. Moreover, invoking the asymptotic ex-
pression of Bessel functions for large order [27], we can
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easily treat the truncation of series appearing in this pa-
per.

(ii) From the view of mathematical physics, our theory
overcomes the difficulty of solving the anisotropic elasto-
dynamic wave equations in spherical coordinate systems
by separation of variables, but the essence of the present
theory is the physical insight into the physical problem.
This point was further shown in deriving the Green’s
functions by means of Weyl’s method. It is also interest-
ing that the elastodynamic wave equations for HEAM
are exactly solved without resorting to the coupled
differential equations in a spherical coordinate system
directly. This is something like Hansen’s solutions to the
vector wave equations in isotropic media [25]. However,
Hansen’s solutions are also based on the differential equa-
tions directly. Thus the solution given in this paper is in
a different light.

(iii) The expansion of the undetermined angular spec-
trum amplitudes for isotropic media is well known
[20,25], and it is well motivated to pursue such an ap-
proach, but to the best of our knowledge this paper
represents the first attempt to do so for the HEAM [16]
whose eigenwave numbers are functions of the directions
of the wave vector. The successive steps are not very
novel, but it was considered worthwhile to examine the
elastodynamic waves in HEAM and to spell them out for
reference purposes.

(iv) The formulation of the present theory facilitates
the utilization of the character of media [16]. For exam-
ple, for the homogeneous elastic transversely isotropic
media [8,28], the eigenwave numbers are independent of
@, and all the integrals about @, appearing in this paper
can be evaluated analytically in terms of Eq. (23).

There are many topics in the elastic wave theory of
bounded homogeneous anisotropic media to be studied.
Some of them will be left for future papers on applica-
tions.

APPENDIX: VECTOR SPHERICAL
WAVE FUNCTIONS

The spherical vector wave functions are [20]

L) (k7 0,0)=—— VW)
kn

- 1 d.
P,m(6,<p)k dr[z, (k,7)]

n

+VIT+1B,, klr[z,“’(knr)] . (Ala)
M (k,r,0,p)=V X(t¥,, )=VI(I +1)C,,z}"(k,r) ,
(A1b)

Nﬁfg(knr,e,¢)=7chxmg;;1

1
k,r

=VI(I+1)P,, [z (k,r)]
TR, L 4o
+VI(I+1)B,, Ky e CRUROIR

(Alc)
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where
W) =z{Nk,r)P"(cos@)e™? (A2a)
k), i=1
Yolk,r), i=2
(i) —
2 ka1 )= 05 (k) Fip, (kyr), =3 (A2b)
Jnkyr) =iy, (k,r), i=4
and

P,,.(0,9)=1X,,(8,p)=TP(cosf)e™? , (A3)

B,,(0,9)=rVX,,(6,p)=1rXC,, (0,p)

_adP,’"(cose) impy 3 im P™M(cos)em?
- do ¢ ¢sin6 preosvie ’

(A4)

Con 0,0V =8 Pir(cost)e o — 00 img
LAV ELE S 7 I

(AS)

[1] M. K. Hinders, Phys. Rev. A 43, 5628 (1991).

[2] W. C. Chew, Waves and Fields in Inhomogeneous Media
(Van Nostrand Reinhold, New York, 1990).

[3] Acoustic Electromagnetic and Elastic Wave Scattering—
Focus on the T-Matrix Approach, edited by V. K. Varadan
and V. V. Varadan (Pergamon, New York, 1980).

[4] D. F. Nelson, Electric, Optic, and Acoustic Interactions in
Dielectrics (Wiley, New York, 1979).

[5] V. T. Buchwald, Proc. R. Soc. London, Ser. A 253, 563

(1959).

[6] Y. H. Pao and V. Varatharajulu, J. Acous. Soc. Am. 59,
1361 (1976).

[71 W. W. Hager and R. Rostamian, Wave Motion 10, 333
(1988).

[8] P. Chadwic, Proc. R. Soc. London, Ser. A 422, 23 (1989).
[9] B. A. Auld, Acoustic Fields and Waves in Solids (Wiley,
New York, 1973), Vol. 1.
[10] C. Monzon and N. J. Damaskos, IEEE Trans. Antennas
Propag. 34, 1243 (1986).
[11]J. C. Monzon, IEEE Trans. Antennas Propag. 35, 670
(1987).
[12] B. Berker, K. A. Umashankar, and A. Taflove, IEEE
Trans. Antennas Propag. 37, 1573 (1989).
[13] C. M. Rappaport and B. J. McCartin, IEEE Trans. Anten-
nas Propag. 39, 345 (1991).
[14] S. N. Papadakis, N. K. Uzunoglu, and N. Christos, J. Opt.

Soc. Am. A 7, 991 (1990).

[15] P. G. Cottis and N. K. Uzunoglu, J. Opt. Soc. Am. A 8,
608 (1991).

[16] W. Ren, Phys. Rev. E 47, 664 (1993).

[17] L. Gurel and W. C. Chew, IEEE Microwave Guides Lett.
2, 182 (1992).

[18] W. C. Chew, J. Electromag. Waves Applicat. 6, 133 (1992).

[19] D. W. Mackowski, Proc. R. Soc. London, Ser. A 433, 599
(1991).

[20] P. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953).

[21] L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave
Remote Sensing (Wiley Interscience, New York, 1985).

[22] H. C. Chen, Theory of Electromagnetic Waves—A Coordi-
nate Free Approach (McGraw-Hill, New York, 1983).

[23] L. Tsang and J. A. Kong, Radio Sci. 18, 1260 (1983).

[24]J. Dalmas, R. Deleuil, and R. H. MacPhie, Q. Appl.
Math. XLVI, 351 (1989).

[25]1J. A. Stratton, Electromagnetic Theory (McGraw-Hill,
New York, 1941).

[26] M. Lax and D. F. Nelson, Phys. Rev. B 4, 3694 (1971).

[27]3. L. Tsalamengas and J. G. Fikioris, J. Appl. Phys. 70,
1121 (1991).

[28] M. N. Kazi-Aoual, G. Bonnet, and P. Jouanna, Geophys.
J. R. Astron. Soc. Can. 93, 587 (1988).



